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Abstract 

SARS-CoV-2 is a single-stranded RNA virus that has caused more than 0.29 million deaths worldwide 

as of May 2020, and influence of COVID-19 pandemic is increasing continuously in the absence of 

approved vaccine and drug. Moreover, very limited information is available about SARS-CoV-2 

expressed regions and immune responses. In this paper an effort has been made, to facilitate vaccine 

development by proposing multiple epitopes as potential vaccine candidates by utilising SARS-CoV-2 

transcriptome data. Here, publicly available RNA-seq data of SARS-CoV-2 infection in NHBE and 

A549 human cell lines were used to construct SARS-CoV-2 transcriptome to understand disease 

pathogenesis and immune responses. In the first step, epitope prediction, MHC class I and II gene 

identification for epitopes, population coverage, antigenicity, immunogenicity, conservation and cross-

reactivity analysis with host antigens were performed by using SARS-CoV-2 transcriptome, and in the 

second step, structural compatibility of identified T-and B-cell epitopes were evaluated with MHC 

molecules and B-cell receptors through molecular docking studies. Quantification of MHC gene 

expression was also performed that indicated high variation in allele types and expression level of MHC 

genes with respect to cell lines. In A549 cell line, HLA-A*30:01:01:01 and HLA-B*44:03:01:01 were 

highly expressed, whereas 92 variants of HLA-A*24 genes such as HLA-A*24:02:01:01, HLA-

A*24:286, HLA-A*24:479Q, HLA-A*24:02:134 and HLA-A*24:02:116 were highly expressed in 

NHBE cell lines. Prevalence of HLA-A*24 alleles was suggested as risk factors for H1N1 infection, 

and associated with type-1 diabetes. HLA-C*03:03, linked with male infertility factors was also highly 

expressed in SARS-CoV-2 infected NHBE cell lines. Finally, three potential T-cell and five B-cell 

epitopes were selected for molecular docking studies with twenty-two MHC molecules and two B-cell 

receptors respectively. The results of in silico analysis indicated that proposed epitopes have high 

potential to recognize immune response of SARS-CoV-2 infection. This study will facilitate in vitro 

and in vivo vaccine related research studies. 
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1. Introduction 

Corona viruses are a group of related viruses that are responsible for causing diseases ranging from the 

common cold to severe diseases like Middle East respiratory syndrome (MERS), SARS-CoV-2 in 

mammals and birds. SARS-CoV-2 is a positive sense single-stranded RNA virus belonging to the 

family Coronaviridae and subgenus Sarbecovirus. It is responsible for the widespread global pandemic 

causing an upper respiratory tract infection of humans [1]. SARS-CoV-2 virion ranges from 

approximately 50-200 nm in diameter [2].  SARS-CoV-2 is made up of four structural proteins known 

as the S (spike), E (envelope), M (membrane) and N (nucleocapsid) proteins. The nucleocapsid protein 

contains the viral RNA and the spike, membrane, envelope make up the viral envelope. The spike 

protein is responsible for the viral attachment with angiotensin-converting enzyme 2 (ACE2) receptors 

and facilitates entry into the host cells [3]. The ACE2 receptors are present in the goblet (secretory) 

cells of ciliated cells in the nose, back of the throat, lungs, gut, heart muscles and kidney which 

facilitates the hand to mouth transmission route. The viral RNA is released in the nasal cells when the 

transmembrane serine protease 2 (TMPRSS2) splits the spike proteins, and enters inside the cell, the 

viral genetic material replicates into millions. Seroconversion of SARS-CoV-2 took place within four 

days of infection and was found in most patients by day 14 and persistent specific IgG and antibody 

production was reported even after 2 years of infection [4]. Whereas limited serological details of 

SARS-CoV-2 are available at the moment, it is reported that a patient showed the presence of IgM after 

9 days of infection, and later production of IgG after 2 weeks [5]. In an in vitro plaque testing with 

patient sera, it was confirmed that it is able to neutralize SARS-CoV highlighting the successful 

mounting of humoral response [6]. The current evidences have shown that Th1 immune response can 

be successful for controlling SARS-CoV and may work for SARS-CoV-2 as well, since the epitopes 

overlap for both, the T-epitopes can be identified and will be valuable for designing the cross-reactive 

vaccines. 

Epitopes are the antigenic regions of an antigen, causing an immune response which is identified by 

antibodies generated from T-and B-cells. T-cell epitopes present on the cell surface binds to the major 

histocompatibility complex (MHC) molecules. The MHC I molecules presents peptides of 8-11 amino 

acids in length, which are CD8+ T-cell epitopes. In contrast, MHC II molecules present longer peptides 

of 13-17 amino acids in length, which are CD4+ T-cell epitopes. The epitope-based vaccine 

development offers prospective advantages over the whole protein approach because the immune 

response against highly reserved epitopes over a widespread population can be used for the treatment 

of highly variable pathogens [7, 8]. Various successful studies were reported for the epitope-based 

vaccine design against West Nile virus [9], dengue virus [10], chikungunya virus [11], shigellosis [12] 

etc. COVID-19 first cases were observed in Wuhan, China in December 2019, which seems to be the 

origin of SARS-CoV-2 virus. As of April 2020, there are more than 3.04 million confirmed cases, with 

211 thousand deaths globally. Vaccines and commercial detection kits are mostly in the developmental 

stages to combat this viral infection, and currently, chloroquine and hydroxychloroquine drugs are being 
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used for treatment, but there is no approved drug or vaccine triggering the immune response in the body 

against SARS-CoV-2 in the market.  

In the present study, an integrated bioinformatics approach was used to identify expressed T- and B-

cell epitopes from RNA-seq data of SARS-CoV-2 infection in normal human bronchial epithelial 

(NHBE) and human adeno carcinomic alveolar basal epithelial (A549). To the best of our knowledge, 

no previous study has been reported a list of expressed T-and B-cell epitopes for multi-epitope based 

vaccine development. The specific objectives of this research study were: (1) SARS-CoV-2 

transcriptome construction and annotation to explore expressed region of SARS-CoV-2 genome, (2) 

identification of potential T-and B-cell epitopes by using SARS-CoV-2 transcriptome, (3) modelling 

and docking studies to explore structural compatibility of epitopes with MHC complexes and B-cell 

receptors, and (4) gene expression of MHC class I and II genes by using RNA-seq data. 

2. Material and Method 

2.1. SARS-CoV-2 data retrieval, processing and transcriptome assembly  

Due to the recent outbreak of SARS-CoV-2, several countries were started to generate molecular 

resources to understand pandemic caused by SARS-CoV-2. We used publicly available transcriptome 

data (PRJNA615032) of SARS-CoV-2 infection in A549 and NHBE cell lines [13]. All the available 

data were download from the sequence read archive of NCBI database and fastq-dump program of 

SRAtoolkit  [14] was used to extract fastq reads. Quality assessment and control of RNA-seq data was 

performed through the FastQC version 0.11.5 [15], MultiQC version 1.8 [16] and trimmomatic version 

0.39 software [17]. All high-quality reads were mapped over SARS-CoV-2 isolate Wuhan-Hu-

1(MN908947.3) by using HISAT2 version 2.1.0 on default parameters [18]. Samtools version 1.1.0 

[19] and Bedtools version 2.26.0 [20] were used to extract all the mapped read from each sample and 

extracted reads were used to construct de novo assemblies by using the Trinity assembler version 2.5.1 

[21]. TransDecoder program [22] was used to generate protein sequence from assembled transcriptome. 

Kallisto, a pseudo aligner for bulk RNA-seq data alignment, was used for expression quantification 

[23]. 

2.2. T-Cell epitope prediction from SARS-CoV-2 transcriptome sequences 

T-cell epitopes are short peptide fragments of infectious agents such as viruses and bacteria, which has 

potential to induce specific immune responses and can be used as a key molecular resource for epitope-

based vaccine design. NetCTL 1.2 program [24] was used to predict cytotoxic T-lymphocyte (CTL) 

epitopes from protein sequences, translated from assembled SARS-CoV-2 transcriptome. NetCTL 1.2 

has 12 super types i.e. A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62, and combined 

score of proteasomal C terminal cleavage for CD8+ T-cell epitopes, MHC class I binding, and TAP 

transport efficiency was considered for epitope identification at threshold value 1.00. To explore 

antigenic potential of identified peptides, VaxiJen v2.0 [25] server was used at threshold value 0.4, and 

IEDB program (http://tools.iedb.org/immunogenicity/) was used to identify immunogenicity score for 

each identified epitopes. Combination of antigenicity and immunogenicity was used to select highly 
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antigenic and immunogenic peptide for further analysis. To explore MHC genes and alleles, all the 

identified epitopes were analysed through IEDB program mhci (http://tools.iedb.org/mhci/download/) 

and mhcii (http://tools.iedb.org/mhcii/download/). Peptide length of predicted epitopes 9.0 and 

inhibitory concentration (IC50) value less than or equal to 200nM were selected as parameters for the 

identification of MHC class I and II binding genes and alleles. Conservation level of selected epitopes 

were calculated from IEDB program conservancy (http://tools.iedb.org/conservancy/) by using 

transcriptome sequences, and publically available SARS-CoV-2 protein sequences. IEDB population 

coverage tool (http://tools.iedb.org/population/) was used to analyze population coverage through 

predicted MHC alleles of epitopes [26, 27]. Peptide toxicity prediction was performed through the 

ToxinPred web server [28]. Cross-reactivity with host antigenic proteins might leads to adverse immune 

responses. Therefore, selected epitopes were checked for similarities with the human proteome 

sequences (Homo sapiens: GRCh38) through standalone NCBI BLAST similarity search tool.  

2.3. B-cell epitopes prediction from SARS-CoV-2 transcriptome sequences 

Sequence and structure based approaches were used to identify B-cell epitopes. In the sequence based 

approach, VaxiJen server was used to identify most antigenic proteins from translated transcriptome, 

and BepiPred-2.0 program [29] was used to identify B-cell epitopes from the identified antigenic 

proteins. IEDB conformational B-cell prediction tool ElliPro (http://tools.iedb.org/ellipro/) was used to 

predict epitopes based on protein structure with the parameters PI (protrusion index) value 0.8 as 

minimum score, and 7 Å as maximum distance [30]. Protein sequences of SARS-CoV-2 transcriptome 

were showed strong sequence similarity with modelled 3D structure of SARS-CoV-2 genome at Zhang 

lab. Hence, we downloaded 24 structure of SARS-CoV-2 genome from Zhang lab 

(https://zhanglab.ccmb.med.umich.edu/) for structure-based epitope prediction. Epitopes identified by 

both the approaches were evaluated for toxicity, antigenicity, and immunogenicity same as done for T-

cell epitopes. Cross-reactivity of selected epitopes were checked with human proteome sequences. 

2.4. Molecular docking studies 

Selected epitopes were used for structural compatibility and interaction analysis with available MHC 

class I and II genes, and B-cell receptor structures. Protein structure of MHC class genes, and B-cell 

receptors were retrieved from RCSB Protein Data Bank (PDB) (https://www.rcsb.org/) in PDB format. 

To identify the interactions between predicted T- and B- cell epitopes and protein receptors, the 

molecular docking studies were performed using AutoDockTools, AutoDock Vina and CABS-dock 

server [31-33]. Structural compatibility and interaction prediction between peptide and receptor in real 

world is even more complex and challenging. Therefore, initial screening of peptides for receptors were 

performed through Autodock, whereas CABSdocks, considered full flexibility of peptide and small 

fluctuation in receptor backbone, was used for final binding and compatibility analysis. Protein complex 

visualization and hydrogen bonds were calculated through UCSF chimera [34] and LIGPLOT software 

package [35], and also ensured the number of genuine hydrogen bonds through cavity prediction by 

using D3Packets server [36].  
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3. Results 

T- and B-cells are the working horses of the adaptive immune system which are capable to produce 

immunological protection against specific pathogens. The function of T- and B cells are based on the 

recognition of antigens through specialized receptors and recognized antigenic regions are known as 

epitopes. Therefore, identification of epitopes for pathogens is crucial for the understanding of disease 

etiology, disease diagnostics, and epitope-based vaccine development. In this study, an effort was made 

to identify expressed T- and B-cell epitopes from RNA-seq data of SARS-CoV-2 infection in human 

NHBE and A549 cell lines. To achieve this goal, various bioinformatics approaches, tools and software 

were used as summarized in figure-1. 

 

 

 

Figure-1. Schematic representation of used approach for transcriptome assembly from RNA-seq data 

of SARS-CoV-2 infection in human cell lines, epitope identification, and molecular docking studies.  

3.1 SARS-CoV-2 transcriptome assembly and annotation  

De novo SARS-CoV-2 transcriptome was constructed by using publicly available transcriptome data 

from SRA project (PRJNA615032). Transcriptome data was generated to the study of SARS-CoV-2 

infection in human cell lines NHBE and A549 [13]. Extracted reads were trimmed by removing adapter 

and low quality sequences by using trimmomatic-0.39. Reads with a length of less than 20 bps were 

also removed from dataset [37]. In order to develop SARS-CoV-2 transcriptome assembly, raw reads 

were aligned to the SARS-CoV-2 genome (Accession number: MN908947.3, Wuhan-Hu-1 isolate) by 
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using the RNA-seq alignment tool HISAT2 on default conditions. After read mapping, Samtools and 

Bedtools were used to extract mapped RNA reads on SARS-CoV-2 genome. Total, 87,716 reads were 

extracted from all the samples. Detail description of experiment, sample name, description, and number 

of mapped reads per sample over SARS-CoV-2 genome were given in supplementary material file1 

(Table - S1). All the extracted RNA-seq reads were used to construct de novo SARS-CoV-2 

transcriptome through Trinity software. In total, 54,814 bases were assembled into 27 transcripts with 

median contig length 650 bps, N50 value of 10,677 bps and approximate average transcript length of 

2030 bps. The generated transcriptome assembly was clustered at 90 % sequence identity through CD-

HIT software that produced 27 non-redundant transcripts, the same number of non-redundant transcripts 

showed the sequence variability among assembled transcripts. Non-redundant transcripts were 

translated into 44 protein sequences through TransDecoder program. Protein sequences were annotated 

against Uniport databases by using BLAST similarity search at evalue threshold 1e-10 (Table - 1).  

Table-1 SARS-CoV-2 transcriptome annotation along with expression values. H: Helicase, M: 

Membrane protein, N: Nucleoprotein, NendoU: Uridylate-specific endoribonuclease, NSP: Non-

structural protein, ORF: open reading frame, SG: Surface glycoprotein, RdRp: RNA-dependent RNA 

polymerase, TPM: Transcript per million. 

Transcripts ids Functional 

Class 

Uniport Annotation Expression 

(TPM) 

TRINITY_DN10_c0_g1_i1_p1 H ORF1ab polyprotein Tax=BtRs-BetaCoV/YN2013 TaxID=1503303 3661.09 

TRINITY_DN0_c0_g1_i1_p3 M Membrane protein Tax=Bat SARS-like coronavirus TaxID=1508227 91746.3 

TRINITY_DN0_c0_g1_i2_p5 M Membrane protein Tax=Bat SARS-like coronavirus TaxID=1508227 1716.75 

TRINITY_DN0_c0_g1_i4_p5 M Membrane protein Tax=Bat SARS-like coronavirus TaxID=1508227 3188.07 

TRINITY_DN0_c0_g1_i6_p5 M Membrane protein Tax=Bat SARS-like coronavirus TaxID=1508227 12432 

TRINITY_DN0_c0_g1_i1_p1 N Nucleoprotein Tax=Bat SARS-like coronavirus TaxID=1508227 91746.3 

TRINITY_DN0_c0_g1_i2_p3 N Nucleoprotein Tax=Bat SARS-like coronavirus TaxID=1508227 1716.75 

TRINITY_DN0_c0_g1_i4_p3 N Nucleoprotein Tax=Bat SARS-like coronavirus TaxID=1508227 3188.07 

TRINITY_DN0_c0_g1_i6_p3 N Nucleoprotein Tax=Bat SARS-like coronavirus TaxID=1508227 12432 

TRINITY_DN0_c0_g1_i7_p1 N Nucleoprotein Tax=Bat SARS-like coronavirus TaxID=1508227 838657 

TRINITY_DN0_c0_g1_i2_p2 NendoU Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 1716.75 

TRINITY_DN0_c0_g1_i4_p2 NendoU Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 3188.07 

TRINITY_DN0_c0_g1_i6_p2 NendoU Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 12432 

TRINITY_DN0_c0_g1_i3_p1 NSP1 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 10488.1 

TRINITY_DN0_c0_g1_i5_p1 NSP1 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 3765.1 

TRINITY_DN20_c0_g1_i1_p1 NSP2 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 1786.89 

TRINITY_DN4_c0_g1_i1_p1 NSP2 Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 3107.15 

TRINITY_DN13_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 1009.35 

TRINITY_DN17_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 1416.36 

TRINITY_DN19_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 1759.06 

TRINITY_DN2_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 1602.68 

TRINITY_DN5_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 553.586 

TRINITY_DN6_c0_g1_i1_p1 NSP3 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 1813.9 

TRINITY_DN7_c0_g1_i1_p1 NSP6 Non-structural polyprotein 1ab Tax=Betacoronavirus TaxID=694002 697.846 
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TRINITY_DN1_c0_g1_i1_p1 NSP8 Non-structural polyprotein 1ab Tax=Bat SARS-like coronavirus 1941.65 

TRINITY_DN0_c0_g1_i1_p2 ORF3a Uncharacterized protein Tax=Human SARS coronavirus TaxID=694009 91746.3 

TRINITY_DN0_c0_g1_i2_p4 ORF3a Uncharacterized protein Tax=Human SARS coronavirus TaxID=694009 1716.75 

TRINITY_DN0_c0_g1_i4_p4 ORF3a Uncharacterized protein Tax=Human SARS coronavirus TaxID=694009 3188.07 

TRINITY_DN0_c0_g1_i6_p4 ORF3a Uncharacterized protein Tax=Human SARS coronavirus TaxID=694009 12432 

TRINITY_DN0_c0_g1_i1_p4 ORF7a SARS_X4 domain-containing protein Tax=Bat SARS-like coronavirus 91746.3 

TRINITY_DN0_c0_g1_i2_p6 ORF7a SARS_X4 domain-containing protein Tax=Bat SARS-like coronavirus 1716.75 

TRINITY_DN0_c0_g1_i4_p6 ORF7a SARS_X4 domain-containing protein Tax=Bat SARS-like coronavirus 3188.07 

TRINITY_DN0_c0_g1_i6_p6 ORF7a SARS_X4 domain-containing protein Tax=Bat SARS-like coronavirus 12432 

TRINITY_DN0_c0_g1_i1_p5 ORF8 Uncharacterized protein, Bat SARS-like coronavirus TaxID=1508227 91746.3 

TRINITY_DN0_c0_g1_i2_p7 ORF8 Uncharacterized protein, Bat SARS-like coronavirus TaxID=1508227 1716.75 

TRINITY_DN0_c0_g1_i4_p7 ORF8 Uncharacterized protein, Bat SARS-like coronavirus TaxID=1508227 3188.07 

TRINITY_DN0_c0_g1_i6_p7 ORF8 Uncharacterized protein, Bat SARS-like coronavirus TaxID=1508227 12432 

TRINITY_DN15_c0_g1_i1_p1 Proteinase UPI0001D192D5 related cluster, TaxID= RepID=UPI0001D192D5 1706.65 

TRINITY_DN9_c0_g1_i1_p1 Proteinase UPI000181CE36 related cluster, TaxID= RepID=UPI000181CE36 811.289 

TRINITY_DN11_c0_g1_i1_p1 RdRp ORF1ab polyprotein n=1 Tax=BtRf-BetaCoV/JL2012 TaxID=1503299 1168.03 

TRINITY_DN12_c0_g1_i1_p1 RdRp RNA-dependent RNA polymerase Tax=Human SARS coronavirus 1833.88 

TRINITY_DN0_c0_g1_i2_p1 SG Spike protein n=1 Tax=Bat SARS-like coronavirus TaxID=1508227 1716.75 

TRINITY_DN0_c0_g1_i4_p1 SG Spike protein n=1 Tax=Bat SARS-like coronavirus TaxID=1508227 3188.07 

TRINITY_DN0_c0_g1_i6_p1 SG Spike protein n=1 Tax=Bat SARS-like coronavirus TaxID=1508227 12432 

 

3.2. T-cell epitopes identification of SARS-CoV-2 transcriptome 

T-cell epitopes are presented by MHC class I and II that are recognized by two distinct subsets of T-

cells, CD8+ and CD4+ T-cells, respectively. NetCTL 1.2 program was used for the prediction T-cell 

epitopes, and 1144 epitopes were selected at combined prediction threshold value1.0 for 12 super type 

categories i.e. A1 (330), A24(314), A26(242), A2(247), A3(328), B27(175), B39(263), B44(133), 

B58(284), B62(473), B7(157), and B8(193). The predicted T-cell epitopes were further evaluated for 

antigenicity by VaxiJen server and immunogenicity by IEDB prediction tools, and 598 and 625 epitopes 

were shown antigenicity and immunogenicity potential respectively. Finally, 598 antigenicity and 

immunogenicity T-cell epitopes were selected for further study. To determine epitopes potential to elicit 

effective immune response, 598 selected epitopes were used to explore interacting MHC alleles through 

IEDB program. Peptide length nine and the IC50 value =< 200nM were selected as parameters for the 

identification of MHC class I binding gene and alleles. MHC class I alleles such as HLA-A, HLA-B, 

and HLA-C were recognized with parameter human as MHC source species and IEBD recommended 

method to predict a distinct set of MHC class I alleles for all selected 598 epitopes. In MHC-I allele 

analysis, HLA-A type alleles were found as more frequently occurring alleles (HLA-A*01:01, HLA-

A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-

A*24:02, HLA-A*26:01, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-

A*33:01, HLA-A*68:01, HLA-A*68:02) than HLA-B type alleles (HLA-B*07:02, HLA-B*08:01, 

HLA-B*15:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:03, HLA-B*53:01, HLA-

B*57:01). In our analysis, HLA-C class genes were not found for any epitopes. ToxinPred was used to 
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explore toxicity of predicted epitopes. Finally, 40 CD8+ T-cell epitopes (Table-2) were selected as high 

immunogenic, antigenic, non-toxic epitopes with good binding affinity to MHC class I alleles. Further, 

these epitopes were explored for SARS-CoV-2 proteome for functional characterization. 

Table - 2 List of potential T-cell epitopes for MHC class I. Immscore: Immunogencity score, Antiscore: 

Antigencity score, IC: inhibitory constant, NT: Non-toxic, H: Helicase, M: Membrane protein, N: 

Nucleoprotein, NendoU: Uridylate-specific endoribonuclease, NSP: Non-structural protein, ORF: open 

reading frame, SG: Surface glycoprotein, RdRp: RNA-dependent RNA polymerase, 2'-O-MT: 2'-O-

methyltransferase, ExoN: Guanine-N7 methyltransferase 

Epitopes Protein Immscore Antiscore Toxicity IC50 MHCI 

DIADTTDAV SG 0.151 1.0904 NT 13.83 HLA-A*68:02 

EQWNLVIGF M 0.226 1.3869 NT 170.94 HLA-B*15:01 

ETSWQTGDF NSP2 0.134 1.314 NT 151.38 HLA-A*26:01 

FEHIVYGDF NendoU 0.223 1.1633 NT 142.3 HLA-B*40:01 

FELEDFIPM NendoU 0.335 1.2669 NT 60.81; 8.64; 9.78 HLA-A*02:06;HLA-

B*35:01; HLA-B*40:01 

FLFLTWICL M 0.354 1.4835 NT 138.72; 32.26 HLA-A*02:01;HLA-

A*02:06 

FLHVTYVPA SG 0.115 1.3346 NT 152.58; 65.16; 7.14 HLA-A*02:01;HLA-

A*02:03; HLA-A*02:06; 

FTIGTVTLK ORF3a 0.180 2.0317 NT 23.28; 4.9 HLA-A*11:01; HLA-

A*68:01; 

FVKRVDWTI ExoN 0.253 1.9477 NT 67.59 HLA-A*02:06; 

HFAIGLALY H 0.196 1.4046 NT 63.58 HLA-A*30:02; 

HSIGFDYVY ExoN 0.233 1.0882 NT 124.39; 12.47; 151.12; 

27.64; 34.81; 41.91; 

56.72 

HLA-A*26:01; HLA-

A*30:02; HLA-A*68:01; 

HLA-B*15:01; HLA-

B*35:01; HLA-B*57:01; 

HLA-B*58:01; 

IFWRNTNPI 2'-O-MT 0.142 1.1927 NT 187.29; 61.88 HLA-A*23:01; HLA-

A*32:01 

ILGTVSWNL NSP3 0.118 1.3875 NT 23.63; 95.09 HLA-A*02:01; HLA-

A*02:03 

ILMTARTVY NSP6 0.126 1.097 NT 14.92; 88.57 HLA-A*30:02; HLA-

B*15:01 

IQYIDIGNY ORF8 0.304 2.096 NT 15.96; 59.22 HLA-A*30:02; HLA-

B*15:01 

KLSYGIATV H 0.157 1.0767 NT 17.61; 3.28; 6.77 HLA-A*02:01; HLA-

A*02:03; HLA-A*02:06 

KSHNIALIW NSP3 0.239 1.2831 NT 15.69; 3.68; 6.85 HLA-A*32:01; HLA-

B*57:01; HLA-B*58:01; 

KSVNITFEL NSP3 0.330 2.1377 NT 15.38; 39.62; 49.16 HLA-A*02:06; HLA-

A*32:01; HLA-B*58:01 

LAAVYRINW M 0.208 1.4322 NT 127.84; 23.1; 64.87 HLA-B*53:01; HLA-

B*57:01; HLA-B*58:01 

LEPEYFNSV H 0.102 1.067 NT 30.81 HLA-A*02:06; 
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LPVNVAFEL NendoU 0.241 1.2581 NT 14.41; 44.35; 83.6 HLA-B*07:02; HLA-

B*35:01; HLA-B*53:01 

LSPRWYFYY N 0.357 1.2832 NT 48.64; 74.89 HLA-A*01:01;HLA-

A*30:02; 

LSYGIATVR H 0.256 1.696 NT 14.11; 24.87 HLA-A*31:01; HLA-

A*68:01 

LTAVVIPTK NSP3 0.233 1.1167 NT 17.58; 183.23; 37.55 HLA-A*11:01;HLA-

A*30:01; HLA-A*68:01; 

LVSDIDITF NSP3 0.254 1.783 NT 10.85; 152.54; 184.23; 

185.25; 

HLA-A*02:06; HLA-

B*15:01; HLA-B*35:01; 

HLA-B*53:01; 

NVAFNVVNK NendoU 0.194 1.1634 NT 10.54; 73.52 HLA-A*11:01; HLA-

A*68:01; 

NYVFTGYRV H 0.228 1.0902 NT 103.91; HLA-A*23:01; 

QQWGFTGNL ExoN 0.281 1.0003 NT 86.89; HLA-A*02:06; 

QYIKWPWYI SG 0.216 1.4177 NT 13.22; 6.13 HLA-A*23:01; HLA-

A*24:02; 

RELHLSWEV H 0.108 2.2601 NT 38.44; 47.51 HLA-A*02:06; HLA-

B*40:01 

SLENVAFNV NendoU 0.198 1.0488 NT 152.28; 38.77; 70.84 HLA-A*02:01; HLA-

A*02:03; HLA-A*02:06; 

TLNDFNLVA Proteinase 0.143 1.4845 NT 41.06; 82.34 HLA-A*02:01; HLA-

A*02:03; 

TSFGPLVRK RdRp 0.116 1.7142 NT 15.92; 20.71; 9.98 HLA-A*03:01; HLA-

A*11:01; HLA-A*68:01 

VFITLCFTL ORF7a 0.142 1.249 NT 117.58; 60.42 HLA-A*23:01; HLA-

A*24:02; 

VLSDRELHL H 0.123 1.5809 NT 107.63; 166.19 HLA-A*02:01; HLA-

A*02:03; 

VVFLHVTYV SG 0.128 1.5122 NT 13.02; 21.97; 36.56; 

51.51 

HLA-A*02:01; HLA-

A*02:03; HLA-A*02:06; 

HLA-A*68:02 

VVNARLRAK H 0.144 1.933 NT 168.01; 48.82; 71.14 HLA-A*03:01; HLA-

A*11:01; HLA-A*31:01 

WLIVGVALL ORF3a 0.183 1.2686 NT 121.13; 16.77; 59.19 HLA-A*02:01; HLA-

A*02:03; HLA-A*02:06 

WPWYIWLGF SG 0.417 1.4953 NT 193.4; 42.3; 8.91 HLA-B*07:02; HLA-

B*35:01; HLA-B*53:01; 

YIDIGNYTV ORF8 0.188 1.3128 NT 10.59; 22.57 HLA-A*02:01; HLA-

A*02:06 

 

Similarly, MHC class II gene and allele’s prediction was performed through IEDB analysis resources 

by using the same parameters as for MHC class I except the selection of SMM method for the prediction 

of a distinct set of MHC class II alleles. Total, 4072 epitopes were identified from protein sequences 

with good binding affinity to MHC class II alleles. To select MHC class II alleles and epitopes, we 

decided to take those MHC class II alleles and epitopes which have MHC class I epitopes as a core 

sequence. Total, 34 MHC class II epitope sequences (15-mer) were selected by using previously 
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selected 40 (9-mer) antigenic and immunogenic epitope sequences as core sequences (Supplementary 

file1: Table -S2). Among all MHC-II alleles, HLA-DPA1*01:03/DPB1*04:01, HLA-

DPA1*02:01/DPB1*14:01, HLA-DRB3*02:02, HLA-DRB1*01:01, HLA-DRB1*07:01, HLA-

DPA1*01:03/DPB1*02:01, and HLA-DRB5*01:01were the most abundant alleles. Among all, various 

9-mer epitopes such as LSPRWYFYY, KSVNITFEL, IQYIDIGNY, EQWNLVIGF, DIADTTDAV, 

TSFGPLVRK and RELHLSWEV were also have core sequence among 15-mer MHC class II alleles 

epitopes. But IC50 value of these epitopes were more than 200nM. After conservation analysis, twelve 

most antigenic and immunogenic MHC class II epitopes (APHGVVFLHVTYVPA, 

FLHVTYVPAQEKNFT, GVVFLHVTYVPAQEK, HGVVFLHVTYVPAQE, 

PHGVVFLHVTYVPAQ, QSAPHGVVFLHVTYV, QYIKWPWYIWLGFIA, 

SAPHGVVFLHVTYVP, VFLHVTYVPAQEKNF, VVFLHVTYVPAQEKN, and 

YIKWPWYIWLGFIAG) were selected which contains 9-mer core sequences of four epitopes from 

previously selected 40 epitopes. Peptide sequences of 9-mer epitopes, CD4+ T-cell epitopes sequence 

and MHC class II alleles were given in Table-3. 

Table - 3: List of potential non-toxic, conserved epitopes for MHC class II along with their core 9-mer 

epitopes. Anno: Annotation, Immscore: Immunogencity score, Antiscore: Antigencity score, SG: 

Surface glycoprotein, *: overlapping epitopes 

Anno Peptide Immscore Antiscore MHC-II Epitopes  

SG QYIKWPWYI* 

WPWYIWLGF* 

0.41673 1.4953 HLA-DPA1*01:03/DPB1*02:01 

HLA-DPA1*01:03/DPB1*04:01 

QYIKWPWYIWLGFIA 

YIKWPWYIWLGFIAG 

SG VVFLHVTYV 0.1278 1.5122 HLA-DRB1*01:01; 

HLA-DRB1*04:05; 

HLA-DRB1*07:01; 

HLA-DRB3*02:02; 

QSAPHGVVFLHVTYV 

SAPHGVVFLHVTYVP 

APHGVVFLHVTYVPA 

PHGVVFLHVTYVPAQ 

SG FLHVTYVPA 0.11472 1.3346 HLA-DPA1*01:03/DPB1*02:01; 

HLA-DPA1*01:03/DPB1*04:01; 

HLA-DPA1*02:01/DPB1*14:01; 

HLA-DRB1*01:01; 

HLA-DRB1*04:05; 

HLA-DRB1*07:01; 

HLA-DRB3*02:02; 

APHGVVFLHVTYVPA 

PHGVVFLHVTYVPAQ 

HGVVFLHVTYVPAQE 

GVVFLHVTYVPAQEK 

VVFLHVTYVPAQEKN 

VFLHVTYVPAQEKNF 

FLHVTYVPAQEKNFT 

 

3.3. Population coverage analysis 

MHC molecules can form complexes with millions of epitopes which are reflecting the polymorphic 

nature of MHC genes. If MHC polymorphism occurs in peptide-binding region, binding specificity of 

MHC molecules will be changed. MHC variability has evolutionary advantage to identify variety of 

pathogens. But genetic variability among MHC alleles are also a major obstacles in the development of 

peptide-based vaccines. Therefore, population coverage is an important criterion to design a generalized 

an effective vaccine[38].  
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Figure -2. Global population coverage through identified epitopes. 

In population coverage analysis, MHC class I allele’s of 40 epitopes and MHC class II allele’s of 33 

epitopes were used, and a significant population coverage was found for different geographic regions 

around the world (Figure-2). MHC class alleles of selected epitopes were covered approximately 90% 

of the world population. Highest population coverage was found for Sweden (100%) which was closely 

followed by England, Germany, France, Belgium, United States, Russia, Italy, South Korea, Japan, 

Mexico, Iran, Chile, Brazil, China, Singapore, Pakistan, India, Spain, Thailand, Israel, Philippines, 

Australia, and Vietnam with a population coverage of 99.99%, 99.99%, 99.97%, 99.87%, 99.87%, 

99.81%, 99.78%, 99.66%, 99.55%, 99.02%, 98.84%, 98.55%, 98.43%, 97.6%, 97.24%, 97.13%, 

97.05%, 96.9%, 96.48%, 96.47%, 96.41%, 96.17%, and 95.91% respectively. The lowest population 

coverage were found for Canada (38.31%), Srilanka (42.04) and Ukrain (46.48).  United States and 

Europe has highest number of COVID-19 cases [39]. Hence, the population coverage prediction is 

essential for vaccine design. Population of ethnic groups were also significantly covered 

(Supplementary file1: Table -S3), and average coverage for ethnic group across the world is around 

93%. 

3.4. B-cell epitope identification of SARS-CoV-2 transcriptome. 

B-cell epitope is a precise region of the antigenic protein that is detected by B-cell receptors (BCR) 

through membrane-bound immunoglobulins. Once B-cell activated, it secretes soluble forms of the 
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immunoglobulins to neutralize antigenic proteins. Thus, B-cell epitope and B-cell receptor information 

is essential for epitope-based vaccine design. Prediction of B-cell epitopes was performed by using 

protein sequences of the assembled transcriptome and SARS-CoV-2 protein structures. Total, 330 B-

cells epitopes were predicted through BepiPred-2.0 program by using protein sequences, whereas 77 B-

cell epitopes were predicted through the IEDB conformational tool ElliPro by using 24 SARS-CoV-2 

protein structure, download from Zhang lab. B-cell epitopes prediction from the protein structure is 

highly useful information for epitope-based vaccine design and development [40, 41]. Therefore, a 

separate analysis was performed for B-cell epitopes identified from protein structures, and 19 epitopes 

were identified after toxicity (non-toxic), immunogenicity and antigenicity analysis (Supplementary 

file1: Table-S4). In order to explore most suitable B-cell epitopes, epitopes generated by both the 

approaches were combined, and total 130 unique B-cell epitopes were identified from length range 9 to 

15.  73 B-cell epitopes were predicted as antigenic epitopes through VaxiJen v2.0 webserver and 53 B-

cell epitopes were identified as immunogenic. Total, 16 non-toxic B-cell epitopes were identified with 

immunogenicity score and antigenicity score more than 0.1 and 0.4 respectively. 

Table - 4: List of B-cell epitopes identified form protein sequences of assembled transcriptome and 

modelled protein structure of various coding protein of SAR-CoV-2 genome. Immscore: 

Immunogencity score, Antiscore: Antigencity score, NT: Non-toxic, H: Helicase, M: Membrane 

protein, N: Nucleoprotein, NendoU: Uridylate-specific endoribonuclease, NSP: Non-structural protein, 

ORF: open reading frame, SG: Surface glycoprotein, RdRp: RNA-dependent RNA polymerase, 2'-O-

MT: 2'-O-methyltransferase, ExoN: Guanine-N7 methyltransferase 

B-cell Epitopes Anno Len Immscore Antiscore Toxicity 

SEQLDFIDTKRGV NSP2 13 0.13632 1.7773 NT 

KGTLEPEYF H 9 0.17084 1.3504 NT 

HCGETSWQTGDFV NSP2 13 0.24817 1.1314 NT 

KTVGELGDVRE NSP3 11 0.25316 0.9231 NT 

LTGTGVLTESNK SG 12 0.10111 0.8122 NT 

TGVVGEGSEGLN NSP2 12 0.17371 0.7539 NT 

QTTETAHSC H 9 0.11862 0.7078 NT 

MEVTPSGTWLT N 11 0.13056 0.5982 NT 

SDARTAPHG NSP1 9 0.14895 0.5706 NT 

LKATEETFK H 9 0.34467 0.5278 NT 

NENGTITDA SG 9 0.2408 0.5257 NT 

KGHFDGQQGEVPVS NendoU 14 0.14142 0.5183 NT 

LQAGNATEVPANS NSP10 13 0.2729 0.4491 NT 

VQIPTTCANDPVGFT NSP10 15 0.2336 0.4488 NT 

 

Cross-reactivity analysis of epitopes were performed against human proteome sequences through 

BLAST similarity search, and found that two B-cell epitopes (DNNFCGPDGYPLE, 
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NQDLNGNWYD) showed significant similarity with human proteins ENSP00000390696.1 and 

ENSP00000263390.3 respectively (Supplementary file1: Table-S5). Finally, 14 B-cell epitope were 

found for further analysis (Table - 4).  On the basis of immunological parameters, the five B-cell 

epitopes, NSP2 (SEQLDFIDTKRGV, HCGETSWQTGDFV), Helicase (KGTLEPEYF), NSP3 

Papain-like (KTVGELGDVRE), and Surface glycoprotein (LTGTGVLTESNK) were selected from 

Table - 4 for molecular docking studies of B-cell receptors. 

3.5. Molecular docking analysis 

Cellular immunity gets activated when MHC molecules binds to intracellular and extracellular proteins 

displayed on the cell surface. Structural analysis of epitopes and MHC molecules can improve our 

knowledge about T-cell based mechanism to reduce disease burden. To explore structural compatibility 

between T-cell epitopes and MHC complexes, molecular docking studies were performed to analyze 

binding affinities between MHC complexes and T-cell epitopes. Twenty-two MHC proteins were 

explored with selected three T-cell epitopes, and the best interaction was identified with the highest 

binding affinity. The compatible structural model of epitopes (WPWYIWLGF, VVFLHVTYV, and 

FLHVTYVPA) and the MHC molecules were retaining  a binding affinity range from of -136.54 to -

7.12 kcal/mol. Detail description of molecular interaction analysis of peptide VVFLHVTYV and 

identified protein structure of MHC genes were given in Table - 5. Detail docking descriptions of other 

two epitopes with MHC molecule were given in supplementary material file1 (Table - S6). 

Table -5. Molecular interaction and docking analysis of identified antigenic and immunogenic T-cell 

epitope (VVFLHVTYV) and selected protein structures of MHC alleles. TPM (Transcript per million) 

MHC Alleles 

(PDB Code) 

Expression 

(TPM) 

Protein 

Chain 

Interaction 

Energy 

Total 

Energy 

Hydrogen Bond 

(Peptide - Receptor) 

HLA-DRB3*02:02 (2Q6W) NoExp B -96.73 -1560.1 THR7-ASP152, LEU4-SER120 

HLA-A*02:03 (3OX8) 46.1625 A -63.72 -1937.21 THR7-ASP77, THR7-TYR84 

HLA-DQA1*05:01/DQB1*03:01 

(4D8P) 

NoExp A -69.82 -890.23 VAL1-SER8, TYR8-THR93, 

VAL1-VAL6, PHE3-SER8, 

TYR8-THR83, TYR8-ASP142 

HLA-DRB1*04:01 (5JLZ) NoExp B -57.25 -1377.11 THR7-GLU187, HIS5-GLU187, 

PHE3-VAL101  

HLA-DRB1*01:01 (5V4N) NoExp C -63.35 -1430.47 VAL1-HIS360, THR7-GLU411 

HLA-A*23:01 (5WWJ) 78.8768 C -95.26 -1611.15 TYR8-CYS264, TYR8-CYS388, 

VAL9-TYR327, VAL9-ASN331 

HLA-A*24:02 (5XOV) 2597.88 A -82.36 -2186.76 THR90-HIS5, HIS191-HIS5, 

THR190-THR7, THR190-THR7 

HLA-A*11:01 (6ID4) NoExp A -7.12 -1452.3 LEU4-TYR27, LEU4-ARG6, 

TYR8-SER4, SER4-VAL9 

HLA-B*44:02 (3DX6) NoExp A -83.81 -2384.29 THR7-ASP114,VAL1-SER167, 

VAL1-GLU55 

HLA-DPA1*01:03/DPB1*02:01 

(3LQZ) 

NoExp A -75.51 -3195.72 HIS5-GLU134, HIS5-HIS144 

HLA-A*02:06 (3OXR) NoExp C -47.82 -2993.06 VAL1-HGLN54, PHE3-GLN54, 

HIS5-GLU55, HIS5-TRP51 
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HLA-B*57:01 (3X11) NoExp A -31.02 -2183.55 TYR8-GLN155, VAL9-TYR99, 

VAL1-SER116, PHE3-SER8 

HLA-A*68:02 (4HWZ) 61.582 A -56.06 -2054.65 PHE3-ARG144, VAL1-ASP77, 

VAL9-THR73, HIS5-THR73 

HLA-B*44:03 (4JQX) 38.0344 A -39.35 -1709.95 THR7-ASN77, VAL9-SER69, 

TYR6-GLN89 

HLA-B*35:01 (4PRA) 53.433 A -22.74 -1780.49 VAL1-ARG6, VAL9-SER116, 

THR7-ASP144, TYR8-TYR74 

HLA-A*02:01(4U6Y) 27.0879 A -29.1 -1507.37 VAL1-GLU63, VAL1-TYR99, 

HIS5-HIS114, THR7-HIS144 

HLA-DRB1*11:01(5NI9) NoExp B -90.52 -1566.14 VAL6-TYR30, TYR8-TYR48 

HLA-B*58:01 (5VWH) NoExp A -76.23 -2288.87 THR7-ARG14, HIS5-ARG21 

HLA-A*30:02 (6J1V) NoExp A -80.19 -2377.92 VAL6-ARG202 

HLA-A*30:01 (6J1W) NoExp A -46.93 -1869.26 PHE3-ARG273, HIS5-THR271 

HLA-A*03:01 (6O9B) 23.4843 A -62.78 -2263.52 TYR8-TYR-123, TYR8-

ARG114, HIS5-ARG114 

HLA-A*68:01 (6PBH) 61.582 A -88.24 -2076.8 TYR6-TYR99, ALA9-THR143 

 

MHC class I and II gene expression analysis was performed by using RNA-seq data of cell lines through 

pseudo aligner Kallisto[23]. Expression values of expressed MHC class alleles were given in 

supplementary material file1 (Table - S7). HLA-A*24:02 allele was highly expressed among most 

frequent occurring MHC alleles, but highest interaction of peptide (VVFLHVTYV) was shown with 

HLA-DRB3*02:02 allele with two hydrogen bonds (THR7-ASP152, LEU4-SER120). The epitope 

position in protein structure and the binding interactions had shown in Figure - 3. We were also ensured 

genuine hydrogen bonds interaction with receptors through cavity prediction (Supplementary material 

file2) 
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Figure-3. Molecular interaction of peptide (VVFLHVTYV) and protein structure (5XOV) of HLA 

allele (HLA-A*24:02). a and c) cartoon structure of peptide and class-I HLA allele. b) interaction of 

peptide and MHC-II alleles (Hydrogen bonds in red colour). d) molecular level description of 

interaction through LIGPlot software (Hydrogen bonds in green). 

Similarly, five most antigenic and immunogenic B-cell epitopes were selected for molecular docking 

studies with two B-cell receptors (5DRW and 1K1F) through CABSDocks server. 5DRW protein 

structure is a crystal structure of BCR Fab fragment from subset of chronic lymphocytic leukaemia 

whereas 1K1F is dimer structure of Bcr-Abl oncoprotein. 1K1F protein structure provided a base to 

design an inhibitor to disrupt Bcr-Abl oligomerization. Moreover, 1K1F was without Fab region unlike 

to 5DRW [42]. In our analysis, most of the peptides were shown higher binding affinities with 5DRW 

than 1K1F. Detail description of docking studies of B-cell receptor and peptides were given in Table - 

6. 

Table -6: Molecular docking and interaction analysis of B-cell epitope and B-cell protein receptors. 

Peptide PDB 

Code 

Protein 

Chain 

Interaction 

Energy 

Total 

Energy 

Hydrogen Bonds (Peptide - 

Receptor) 

SEQLDFIDTKRGV 5DRW B -94.17 -1656.88 THR9-PRO49, THR9-SER48, 

THR9-ARG51, GLU7-LYS55 

1K1F A -25.53 -362.98 THR9-ARG50, TRP7-ARG51, 

GLU4ARG51,CYS2-ASN39 

HCGETSWQTGDFV 5DRW B -85.9 -1579.94 SER6-GLN205, THR9-GLN205 

1K1F A -29.14 -366.08 GLN8-ARG22 

KGTLEPEYF 5DRW B -91.21 -1767.94 THR3-SER20, GLU7-SER10 

1K1F A -35.76 -629.66 GLU5-GLN51 

KTVGELGDVRE 5DRW B -37.47 -1490.12 THR2-PRO125, VAL3-SER127, 

GLU11-ASN144, GLY7-

SER168, GLY7-SER182 

1K1F A -54.36 -686.76 THR5-ARG25 

LTGTGVLTESNK 5DRW B -40.46 -1235.01 THR4-TYR37, THR4-ASN39, 

SER10-GLN43 

1K1F A -110.1 -652.47 GLU9-SER18, GLU9-SER41 

 

For protein structure 5DRW, interaction and total energy of peptide and B-cell receptor were varied 

from -94.17 to -37.47 kcal/mol and -1656.88 to -1235.01 kcal/mol respectively. Whereas interaction 

and total energy for 1K1F were varied from -110.1 to -25 kcal/mol and -686.76 to -362.98 kcal/mol 

respectively.  
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Figure – 4. Molecular interaction of peptide (KTVGELGDVRE) and protein structure of Fab region 

of B-cell receptor (5DRW). a and c) cartoon structure of peptide and B-cell receptor. b) interaction of 

peptide and B-cell receptor (Hydrogen bonds in red colour). d) molecular level description of 

interaction through LIGPlot software (Hydrogen bonds in green colour) 

4. Discussion 

SARS-CoV-2 virus has infected more than four million people worldwide, and contagious nature of 

virus has imposed the biggest challenge of COVID-19 treatment and prevention. Therefore, vaccine 

design, development and production against COVID-19 diseases is an urgent requirement to protect 

people from the rising viral attacks. In practice, whole process of vaccine development takes several 

years to be completed [43]. But, integration of immunological understanding, high throughput genomics 

technologies, and bioinformatics tools and techniques can help us to design effective and safe vaccines 

in a short duration. In human research studies, vaccines were shown variable length of protection period 

such as chikungunya, rift valley fever virus, and measles, are about 30 years, 12 years, and 65 years, 

respectively [44]. In order to develop epitope-based vaccine, the surface glycoprotein is the primary 

focus because it is involved in the interaction between virus and human cell receptor, and contribute 

significant role in pathogenesis. But, other viral elements are also important to cause disease [45]. 

Information of expressed regions of viral genome is very important to identify potential vaccine 

candidates. In the present study, SARS-CoV-2 transcriptome was used for the molecular cataloguing of 

immunodominant epitopes, and result of performed analysis is summarized in Figure-5.  
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Figure -5. Overview of performed study: genome-wide transcriptome analysis of SARS-CoV-2, T- and 

B-cell epitopes, and docked complexes. Docked structures of B-cell receptor and MHC alleles were 

given at right-side and their T-and B-cell epitopes were highlighted in yellow colour.  

In this study, we used RNA-seq data of SARS-CoV-2 infection in human cell lines NHBE and A549. 

We extracted the RNA-seq reads for SARS-CoV-2 genome and constructed a transcriptome to explore 

expressed regions of SARS-CoV-2 genome. In assembled transcripts, non-structural polyprotein 1ab 

related transcripts were found as most abundant transcripts, whereas nucleoprotein, membrane protein, 

SARS_X4 domain-containing protein, spike protein were also found in significant numbers. The largest 

region of SARS-CoV-2 genome (ORF1ab) was expressed various smaller proteins such as non-

structural proteins (NSP1, NSP2, NSP3, NSP4, NSP6 and NSP8), helicase, uridylate-specific 

endoribonuclease, RNA-dependent RNA polymerase. Expression of polyprotein 1ab protein 

subcomponent (Table - 1) is clearly reflecting about disease initiation and progression such as 

expression of NSP1 protein was indicating the inhibition of host translation machinery by making 

NSP1-40S ribosome complex which can cause an endonucleolytic cleavage near the 5' UTR of host 

mRNAs for degradation. NSP1 also facilitates viral gene expression in infected cells by suppressing 

host gene expression [46]. NSP2 is another expressed transcripts that may have a role in the alteration 

of host cell survival signalling pathway by interacting with host prohibitin (PHB) and prohibitin-

2(PHB2)[47]. NSP3 is known as papain-like proteinase, which is responsible for N-terminus cleavage 

of the replicase polyprotein and involved in the assembly of virally-induced cytoplasmic double-

membrane vesicles together with NSP4, necessary for viral replication. NSP3 is an important viral 

molecular factor to suppress innate immune induction of type I interferon by blocking the 

phosphorylation, dimerization and subsequent nuclear translocation of host interferon regulatory 

transcription factor (IRF3), and also suppress NF-kappa-B signalling of host [48, 49]. NSP6 initiate 
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induction of autophagosomes from host reticulum endoplasmic. But later, it reduces the expansion of 

phagosomes to stop delivery of viral components to lysosomes [50]. NSP8, together with NSP7 forms 

hexadecamer act as a primase to participate in a viral replication. Expression of helicase is required for 

the RNA and DNA duplex-unwinding activities [51]. 

Antigenicity and immunogenicity are the important parameters of epitopes selection. Antigenicity of 

epitopes represents the ability to bind or interact with B-cell or T-cell receptors. T-cell receptors 

recognize amino acid sequences of epitopes, when it binds with MHC molecules whereas in B-cell, B-

cell receptor interact with these epitopes. To identify antigenic epitopes, all the epitopes were selected 

at a threshold antigenicity score greater than 1 (Table - 2). In our antigenicity analysis, epitopes 

KSVNITFEL (2.138), IQYIDIGNY (2.096), RELHLSWEV (2.260), and FTIGTVTLK (2.032) were 

containing high antigenicity. In comparison of antigenicity, immunogenic features of epitopes triggers 

the innate immune response, and later induces adaptive immune response. Antigenic epitopes may or 

may not have immunogenicity. But, all immunogenic epitopes will have antigenic potential [52]. In 

order to select best immunodominant epitopes, antigenicity (>=1) and immunogenicity (>=0.1), both 

criteria were used (Table-2) i.e. WPWYIWLGF (0.417), LSPRWYFYY (0.357), FLFLTWICL (0.354), 

FELEDFIPM (0.335), KSVNITFEL (0.330), IQYIDIGNY (0.304), QQWGFTGNL (0.281), 

LSYGIATVR (0.256), LVSDIDITF (0.254), and FVKRVDWTI (0.253). Epitopes with higher 

antigenicity and immunogenicity scores will have a higher probability of binding with T-and B-

receptors to elicit an effective immune response. MHC proteins helps to distinguish cell own proteins 

from foreign proteins such as viruses and bacteria. Thus, the binding affinity of these epitopes to MHC 

protein is another very important criteria. MHC class I and II genes and alleles were predicted with 

lower IC50 values (IC50 =<200) to ensure a higher affinity of epitopes binding with MHC class I proteins. 

When MHC class I molecules binds to epitopes, immune system recognizes these epitopes as a foreign 

peptide, and the infected cell presents itself as an antigen-presenting cell for self-destruction. For better 

sensitivity, CD8+ T-cell epitopes should be generated from both structural and non-structural proteins 

because both types of proteins will be processed by infected cells in the cytoplasm, whereas structural 

proteins are of interest for CD4+ T-cell epitopes, as it might provide help to cognate interaction [53-55]. 

In this study, we selected CD4+ T-cell epitopes on the basis of CD8+ T-cell epitope core sequences to 

find out the best T-cell epitopes which might provide an immune response for both kinds of MHC 

classes. Twelve 15-mer MHC class II epitopes were selected which have core sequences of four 9-mer 

epitopes of MHC class I, and all four CD8+ cell epitopes belong to surface glycoprotein (Table - 3).  

Diverse repertoire of MHC molecules with the binding ability to a wide range of epitopes, and genetic 

variability among SARS-CoV clade antigens are the major scientific challenges to develop generalized 

vaccine. In order to address these two challenges, we performed conservation analysis of identified 

epitopes through IEDB resources and NCBI Blast, and epitope conservation were ensured among 

known sequences. IC50 threshold 500nM or lower values were suggested to selects strong binding 

affinity between MHC class protein and epitopes [56]. To ensure MHC class allele specificity, lower 
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IC50 (=<200nM) values were considered for the selection of MHC alleles and epitopes. Genetic diversity 

of MHC molecules across the various ethnic groups worldwide is another the major limitation such as 

different MHC class alleles form different geographical region might be presented by a particular set of 

epitopes only. To understand demographic coverage of epitopes, population coverage analysis was 

performed through selected T-cell epitopes, and analysis revealed that approximately 89.44% and 93% 

average coverage can be achieved for world population and population of ethnic groups respectively 

(Figure-2, Supplementary file1: Table -S3). 

In various B-cell research studies, particular antigen induces distinct class or subclass of antibodies such 

as schistosomiasis and filariasis induced a mixed response of IgE and IgG [57, 58]. In order to select 

distinct class of epitopes, sequence and structure-based dual approaches were used to identify B-cell 

epitope by using BepiPred-2.0 and ElliPro programs. 14 non-toxic, non cross-reactive, antigenic, and 

immunogenic B-cell epitopes were identified of different length (Table - 4). Predicted epitopes may or 

may not be a key feature of proteins because prediction methods, ignored epitope and receptor 

interaction, may be predicted only putative epitopes, which might lead to produce an antibody of no 

use. The real epitopes cannot be identified without considering the structural compatibility of complex 

formation [41]. Therefore, it became important to determine the structural coordinates of peptide-

binding pockets to identify motifs for peptide binding. The specificities of different MHC class alleles 

and B-cell receptor’s phenotypes can be used to predict the recognition patterns of epitopes derived 

from antigens. The molecular docking approach was used to validate the interaction of three T-cell 

epitopes to most frequently occurring twenty-two MHC allele’s structures (Table - 5). Similarly, the 

top five B-cell epitopes were used to explore peptide interaction with two different kind of B-cell 

receptor proteins (5DRW and 1K1F). First protein structure, 5DRW was considered to evaluate binding 

affinity of peptides to BCR antibody light chain, whereas 1K1F was a Bcr-Abl oncoprotein and formed 

a tetramer through oligomerization.  Monomer of 1K1F protein provided a basis to design an inhibitors 

to disrupt Bcr-Abl oligomerization[42]. Therefore, 1K1F was considered as control to compare the 

peptide binding affinity to B-cell receptor Fab region binding affinity (Table -6). All peptides showed 

higher binding affinity to 5DRW than 1K1F except peptide KTVGELGDVRE (Supplementary file1: 

Table - S8). Docked complex of 1K1F and peptides was contained good interaction and total energy (-

37.47, and -1490.12) and six hydrogen bonds (THR2-PRO125, VAL3-SER127, GLU11-ASN144, 

GLY7-SER168, GLY7-SER182). Hydrogen bond visualization of 1K1F protein and peptide were given 

in Figure-4.   

The MHC genes and regions are one of the highly studied parts of human genome because it is highly 

associated with different diseases, immune responses and natural targets for molecular evolution, and 

very well characterized at functional levels [59]. Due to biomedical interest, MHC class gene expression 

profiling was performed through SARS-CoV-2 RNA-seq data, and HLA-A variants (HLA-A*01, HLA-

A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-A*25, HLA-A*26, HLA-A*30, HLA-A*31, HLA-

A*32, HLA-A*33, HLA-A*34) were more expressed than HLA-B (HLA-B*08, HLA-B*15,HLA-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 15, 2020. . https://doi.org/10.1101/2020.05.14.097170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097170


20 | P a g e  

 

B*18,HLA-B*37,HLA-B*44,HLA-B*45) and HLA-C variants (HLA-C*03, HLA-C*04, HLA-C*06, 

HLA-C*07, HLA-C*12, HLA-C*16). In MHC class II analysis, HLA-DMA*01, HLA-DMB*01, 

HLA-DOB*01, HLA-DPB1*08, HLA-DPB1*75, HLA-DQA1*01, HLA-DQB1*06, HLA-DRA*01 

and HLA-DRB1*13 gene variants were highly expressed to present exogenous antigens to CD4+ T 

cells. Name of expressed MHC class genes and alleles, expression count (TPM) of alleles with 

respective to human cells were given in supplementary material file1 (Table -S8). Total, 92 gene 

variants of HLA-A*24 were expressed. Interestingly, very low or no expression for HLA-A*24 gene 

variants were observed for A549 cell line. In literature, prevalence of HLA-A*24 alleles was suggested 

as risk factors for severe H1N1 infection [60], and HLA-A*24:02 alleles were also reported to increase 

diabetes-associated risk together with HLA-B*39:01 gene [61]. A HLA-C allele, HLA-C*03:03, linked 

male infertility was also highly expressed in SARS-CoV-2 infected NHBE cell lines. The performed 

study on semen quality was reported that presence of HLA-C*03:03 allele was increased two fold in 

human papillomavirus virus infected individuals [62]. Three genetic variant of HLA-B*08:01 genes, 

myasthenia gravis autoimmune disease characterized by muscle weakness and abnormal fatigability 

were also highly expressed in NHBE cell lines [63]. In present, a combination of malaria and AIDS 

drugs are in use for the treatment of COVID-19. So, it would be interesting to explore malaria and HIV 

associated MHC class allele’s in SARS-CoV-2 transcriptome. Therefore, all the MHC class genes were 

analyzed and filtered, and a list of expressed MHC class alleles for malaria and HIV were generated by 

using IEDB resources along with expression counts for human cell lines (Supplementary file1: Table -

S9). HLA-A*02:01:131, HLA-A*02:01:160 and HLA-A*03:01:01:02N were expressed for malaria and 

HIV in NHBE cell lines. SARS related two HLA genes (HLA-A*23:01:03, HLA-A*23:01:31) were 

expressed, and 34 HLA-A*24:02 were expressed for HIV gag polyprotein in NHBE cell lines. In our 

analysis, HLA-A*23:01 HLA-A*24:02 and HLA-A*02:01 were predicted for proposed T-cell epitopes, 

and molecular interaction studies were also performed between T-cell epitopes and revealed MHC 

alleles.  

5. Conclusion 

This study has high scientific relevance to understand immune responses of SARS-CoV-2 in the scarcity 

of experimental resources. Performed study has provided the extremely useful information about the 

expressed region of SARS-CoV-2 genome, potential T- and B- cell epitopes, molecular interaction of 

identified epitopes to receptors through various bioinformatics approaches, and gene expression of 

MHC class I and II genes. Expressed regions of SARS-CoV-2 genome and putative expressed targets 

of human immune response will facilitate vaccine related research studies. Proposed epitopes are 

possessing T- and B-cell selectivity, nontoxicity, higher population coverage, and significant interaction 

with MHC class I and II genes, and B-cell receptors. However, the presented list of T-and B-cell 

epitopes is an outcome of computational analysis. But, all the epitopes were identified from 

transcriptome data of SARS-CoV-2 infection in human cell-lines. Therefore, these epitopes have high 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 15, 2020. . https://doi.org/10.1101/2020.05.14.097170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097170


21 | P a g e  

 

potential to reflect SARS-CoV-2 immune response, and become vaccine candidates after experimental 

validation. 
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